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Symmetries of Physical Theories 
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A physical theory is, by definition, a complete orthomodular atomic lattice having 
the covering property. Given L a quantum logic and SL the set of all its states, a 
theorem is proved which asserts that, if certain reasonable assumptions concerning 
SL are satisfied, then for any bijective convex mapping U: SL ~ Sb satisfying 
also certain physically meaningful conditions, there exists a unique automorphism 
V: L --> L such that U(p) = p o V -I for all p E SL. 

1. I N T R O D U C T I O N  

In this work complete orthomodular atomic lattices having the covering 
property (COMALC) will be called physical theories. Given L a physical 
theory, we will denote by SL the set of all its states and by GL the set of all 
its observables. In our language, any observable of L is a Boolean subalgebra 
of L (Ivanov, 1992). 

We intend to prove a theorem concerning automorphism of L, which 
will be formulated in the next paragraph. Since this theorem is strongly 
connected with the symmetries of physical theories, we will discuss first the 
general problem of symmetries. It will be easily seen that this discussion 
gives also a quite transparent physical interpretation of some mathematical 
conditions required for proving the above-mentioned theorem. 

One of the most general definitions of a physical theory is the following: 
a physical theory is a pair T = (~, S) of two nonempty sets, which are called 
the set of observables and the set of states of the theory T. For the sake of 
convenience we may consider that the set of all possible values of any given 
observable to E G is a subset of R. In this case the result of the measurement 
of a given observable to in a given state o- is considered to be a probability 
P(to, o-): ~(R)  --> [0, 1], where 3~(R) is the set of all Borel subsets of the 
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real line R (Holevo, 1982). It is quite clear that P(co, or) are those objects 
determined by a theory which have a direct empirical significance. Therefore, 
it is natural to use the set {P(m, (r); co ~ ~, (r c S} for defining the symmetries 
of the theory T. 

Definition 1. A pair (U, V) of bijective mappings, U: G ~ G, l,~ S -4 
S, is said to be a symmetry of T if for all pairs (co, or) we have 

P(U(o~), V(ty)) = P(oo, (r) (AI ' )  

Now let L be a COMALC. It is clear that L defines naturally a physical 
theory, which is the pair (Q,  SD. It is also obvious that, given to ~ Q ,  (r 

SL, the probability P(co, or) is essentially represented by the restriction of 
the states (r to the Boolean algebra to C L (Ivanov, 1992). We want to get 
another form of the condition (AI ' ) ,  which refers to the theory (Q,  SD. We 
know that the elements a ~ L are usually interpreted as tests ("yes-no"  
experiments). Given a E L a test, we may define the observable tOa = {0, 
1, a, a• where 0 and 1 are the lowest and the greatest element of L, 
respectively, and a • the orthocomplement of a. It is easy to understand that 
a and co a are, in fact, physically identical objects, so that we might say that 
c% is a test-type observable. Taking account of the significance of symmetry, 
it is clear that U(Ooa) must be also a test-type observable, defined by a test 
which will be denoted by U(a). Now it is easy to check that U: L --~ L is a 
bijective mapping and it follows that, in the case of the theory (Q,  St), the 
condition (AI ' )  becomes 

[V((r)](U(a)) = or(a) (A1) 

for all a ~ L. It may also be shown that V is a convex mapping. In order to 
do this, let us consider the state (r = ~P=i cicri, where (ri ~ SL and q > 0, 
~in=l c i = 1. We have to prove that 

W(o) = ~ ciW((Ti) (A2) 
i=1 

Taking account of (A1), we may write 

[V(cr)l(U(a)) = (r(a) = ~ ci(Yi(a) 
i=1 

and 

: <, ,:,7: 
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We get 

[V(~r)](U(a)) = LZ=l [ ~ ci V(~i) ] (U(a)) 

for all a s L and (A2) is proved since U is a bijective mapping. 
The conclusion of this discussion is that, in the case of a theory (GL, 

SD, any symmetry is defined by a pair (V, U) of bijective mapping, V." SL -+ 
SL, U: L --> L, V being a convex mapping. In this paper we will prove, roughly 
speaking, that, given V: SL --->" SL a convex mapping, then, provided the 
condition (A1) is satisfied, U is an automorphism of L. To be more precise, 
we will show that, given V: SL ~ SL a bijective convex mapping, there exists 
a unique automorphism ~f: L --~ L such that V(p) = p o 7 -1 for all p E SL. 
This means that, if a physical theory is identified with a COMALC L, then 
all its symmetries are described by automorphism of L. 

2. SYMMETRIES AND A U T O M O R P H I S M S  OF PHYSICAL 
THEORIES 

Let L be a physical theory and f~(L) the set of all its atoms. We will 
denote by --< the order relation on L and by v, ^, and • the join, the meet, 
and the orthocomplementation on L, respectively. The notation (a, b)•  means 
that the elements a, b are orthogonal. 

In order to prove our result we have to make the following assumptions 
concerning the set SL: 

(S 1) For any atom a E f~(L) there exists p E SL such that p(c0 = 1. 
($2) e~ ~ ~(L),  Pl, P2 ~ SL, pl(et) : pz(eQ = 1 ~ Pl = P2- 
(S3) eL,[3 e f l (L ) ,p  E SL, p(a)  =p([3)  = 1 ~ e ~  = [3. 

If L is a classical theory, i.e., an atomic Boolean algebra, then the 
conditions (S1)-($3) are trivially satisfied. On the other hand, any theory 
may be considered as a union of its classical components, which are maximal 
atomic Boolean subalgebras of L (Ivanov, 1992). Since the conditions (S 1)- 
($3) are satisfied by each classical component of L, it is natural--at  least 
from the physical point of v i ew- - to  admit that they are satisfied also by L. 

The unique state taking the value 1 on the atom will be denoted by g,~. 
Such states will be called occasionally g-states. It is easy to prove that any 
g-state is a pure state. It seems that the converse of this statement cannot be 
proved in this framework without supplementary assumptions, so that we 
will consider also the following condition: 

($4) Any pure state on L is a g-state. 
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This assumption ends the list o f  conditions imposed on SL which are used 
for proving the theorem mentioned in the Introduction. In order to state and 
prove this theorem we need some technical results which will be presented 
as a sequence of  propositions. 

We begin with a l emma  referring to a special property of  ~-states. 

Lemma. Let L be a quantum logic and o t e  ~(L) .  Then for any a e L, 
~x > 0, there exists an a tom ",/--< a such that g~(a) = 8,~('y). 

Proof There is nothing to prove when a E I~(L), o~ --< a, or (a ,  a)5..  
Therefore,  let us suppose that e~ :~ a and (c~, a ) Z .  Since L has the covering 
property, there exists an a tom [3, (13, a)5. such that a v a = a v [3. We have 
8~(a v e0 = ~=(a) + ~([3)  = 1. On the other hand, there exists ",/ ~ I~(L), 
(% [3)5. such that cx v [3 = ~ v [3. Since (cx v [3) = ~( ' , / )  + 8~(13) = 1, we 
get easily the equality 8~(y) = 8~(a). It remains to prove that - /<-  a. But ~/ 
--< e~ v [3 --< a v e~ = a v [3 and ('y, [3)5_ imply "y -< a since ~/ -< (a v [3) ^ 

3 - ~---a. 

Proposition 1. Let U: SL --~ SL be a convex bijective mapping.  Then 
there exists an unique bijective mapping  ki I~(L) ~ f~(L) such that 

U(a~) = av(.~, U-L(~,0 = Sv-*(.~ 

Proof It is easy to see that U(S~) is a pure state. Indeed, if U(S~) = 
v~p~ + v2p2, v~, v2 > O, v~ + v2 = 1, pj ~ P2, then, since U -~ is also 
convex,  S~ = v lU- l (pO + vzU-~(pz), which means that S~ is not a pure 
state. Since U(S~) is a pure state, we may find a unique [3 ~ f~(L) such that 
U(S,0 = S~. Therefore,  we may  define a mapping  V: f~(L) --~ I~(L) by the 
equality [3 = V(ot), where [3 is obviously that a tom which satisfies the equality 
U(S~) = S~. 

Suppose now that eL ~ 13, eL, 13 e O(L). From ($3) we know that S~ 
89. It follows that U(S,0 r U(S,0 ~ Sv(,~) ~ Sv(~) ~ V(e0 4= V([3), so that 
V is injective. Let now [3 be an a tom of  L. Obviously,  U-~(86) is a S-state, 
so that U-l (S~)  = 8~, cx e f~(L). It results that 86 = U(8~) = 8v(,~), 13 = 
V(a), and V is also surjective. The equality U - t ( S , )  = 8v-k,~ results easily 
f rom the following chain of  implication: 

= V - l ( o 0  ~ U - l ( a ~ )  = Sv-J(~) 

Taking account of  the completeness  of  L, we may  define the fol lowing 
two mappings:  
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~ : L - - - > L ~ =  V V(cO 
E D.(L) 

~ : L - - > L ~  = V V-l(oO 
e ~ ( L )  

We will assume that the fol lowing two conditions, obviously inspired 

by (A1), are satisfied for all p E SL, a E L: 

[U(p)](~(a)) = p(a) (Ai) 

[ U -  l ( p ) ] (~ (a ) )  = p(a) (Aii) 

We will consider also for any a E L the set P(a) = { p e SL; p(a) = 1 }. 

Proposition 2. The fol lowing two equalities hold for any convex  mapping  
U which satisfies (Ai), (Aft): 

P(~V(a)) = U(P(a)) (i) 

P(~(a) )  = U- l (e (a) )  (ii) 

Proof It is sufficient to prove  (i). Let  us take p ~ P(~(a)).  By definition, 
pOe(a)) = 1. We have to f i n d p '  E P(a) such t h a t p  = U(p'). Let us consider 
the state U-~(p) and prove that [U-l(p)](a) = 1. By applying (Ai) to the 
state U - l ( p ) ,  we get [U(U-1(p))](~(a)) = [U-l(p)](a). Since the left-hand 
side of  this equality equals p(~'(a)) = 1, we get [U-l(p)](a) = 1, so that p '  
= U-l (p) .  Conversely,  given p ~ U(P(a)), there exists p' ~ P(a) such that 
p = U(p'). In this situation p(~V(a)) = [U(p')](~V(a) = p'(a) = 1 and the 
proof  is complete.  

Proposition 3. Let a > 0 be an e lement  of  L and [3 ~ 12(L), [3 --< ~ ( a ) .  
Then there exists an a tom a --< a such that 13 = V(c0. 

Proof Let  us assume that there exists an a tom 13 -< ~V(a) such that [3 
4= V(a) for  all a -< a. Then, obviously,  v- l ( [3)  ~ a and, consequently, 
6v-t(~) ~ P(a) [this is because the l e m m a  combined  with the property ($3) 
makes  true the implication g,~(a) = 1 ~ "y -< a]. On the other hand, g~ 
P(~(a))  and U- l (8~)  = Bv-k~), so that Bv-I(m E U-I(P(~(a))) .  By using 
Proposit ion 2(i), we get 8v-k~) ~ P(a). The obtained contradiction proves 

our result. 

Corollary. The mapping  V defines a one- to-one correspondence between 
the sets f~(a) = {a E f~(L); c~ <--- a} and t~(~(a ) )  = {[3 ~ f~(L); [3 --< ~ ( a ) } .  

Proposition 4. o~ and ~ are order-preserving mappings  and ~ = ~ - l .  
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Proof Obviously a -< b ~ ~ ( a )  -< ~(b) ,  ~ (a )  - ~(b).  Then, from 
the corollary we know that {V-l([3); [3 -< ~(a)} = {oL; ~x -< a}. It follows that 

~CV(a)) = v{V-l([3); [3 -< ~V(a)} = V{ct; a -< a} = a 

Similarly, ~ ( ~ ( a ) )  = a and the proof is complete. 

Proposition 5. V(a ~) = V(a)s 

Proof We will show first that (et, [3)1, ix, [3 ~ ~2(L), implies (V(ct), 
V(I3))z. Indeed, if we put p = 8~, a = [3 in the equality (Ai), then we obtain 
easily 8~([3) = 8v(~)(V([3). Since (a, [3)1 ~ 8~([3) = 0, we get ~v(~)(V([3)) 
= 0, which implies, according the lemma, (V(tx), V([3))• By using this fact, 
we may find with no difficulty (a, b ) •  ~ (~r(a), ~V(b))_L. 

By applying this implication to the pair (a, a• we get (~V(a), ~ ( a ' ) ) •  
or ~Y(a • < ~V(a) • Since L is orthomodular, we may find b ~ L, (b, ~V(a• 
such that ~ • = b v ~ Then, b -< ~V(a-L) i ~ ~ ( a  • --< b -~ ~ a • ----- 
~ and b < ~V(a) • ~ ~(a)  < b" ~ a -< ~V-l(bJ-). It follows that 1 
= ~177 then b" = 1 and b = 0. The proof is complete. 

Now we may state the main result of this work. 

Theorem. Let U: SL ---> SL be a convex bijection satisfying (Ai)-(Aii). 
Then there exists a unique automorphism ~ :  L ~ L such that U(p) = p o 
~ - t ,  for all p ~ SL. 

Proof In the previous series of propositions we proved the existence of  
an automorphism ~V having the property (Ai). Obviously, (Ai) may be also 
written in the form U(p) o ~ = p, which gives immediately U(p) = p o 
~-~.  Suppose now that there exists an automorphism X: L ---> L such that 
U(p) o X = P for all p E SL. Then p o ~V- 1 = p o •  t for all p E SL. Since 

and X are automorphisms, the equality ~ = X holds if ~V(et) = X(a) for 
all a e I-I(L). Given an arbitrarily fixed <x ~ fI(L), we may write 8~ o (~-1  
o X) = 8~, so that ~ [ ( ~ - l  o X)(ct)] = 1 and (~-1  o X)(~x) = ix. It follows 
that ~(tx) = X(Ot)for all a e Iq(L). 

3. C O M M E N T S  

The theorem proved in Section 2 is, in fact, an "algebraic analog" of a 
well-known theorem existing in the standard Hilbert-space quantum mechan- 
ics (Varadarajan, 1968). Of course, the proof of the traditional version of our 
theorem was obtained by using the powerful Hilbert-space techniques. Since 
we tried to prove this result by using only lattice-theoretic methods, we had 
to make several assumptions which are not necessary when the Hilbert-space 
techniques are used. We have in mind the conditions (S 1)-($4) and (Ai)-(Aii). 
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But, as has been seen, (S1)-($4) have a reasonable motivation and 
(Ai)-(Aii) result directly from the general notion of symmetry. Therefore, 
even in the case that some of our assumptions might be proved, accepting 
the above-mentioned conditions as hypotheses is justified. 

We want to end these short comments with some observations concerning 
the conditions which were used for proving our theorem. 

The convexity of U and the condition ($4) were used only for con- 
structing the mapping k~ lq(L) --~ fI(L). 

The completeness of L is necessary for extending naturally the mapping V 
to the lattice L by defining 7 ,  so that it seems to be an indispensable condition. 

Once ~ and ~ are defined, it is almost obvious that it is impossible to 
prove that they are automorphisms without additional assumptions. Probably 
(Ai) and (Aft) are among the most natural hypotheses. 

The covering property is also an indispensable condition. Indeed, it was 
used for proving the lemma which was considered at several central points 
of our proof. 
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